PYRAMID WAVEFRONT SENSING UPDATE FOR MAGAO-X

LAUREN H SCHATZ^I, Jared Males², Michael Hart¹, Laird Close², Katie Morzinski², Olivier Guyon^{1,2,3,4}, Madison Jean¹, Chris Bohlman², Kyle Van Gorkom¹, Alexander Hedglen¹, Maggie Kautz¹, Justin Knight¹, Joseph D. Long², Jennifer Lumbres¹, Kelsey Miller¹, Alexander Rodack¹

¹College of Optical Sciences, University of Arizona. ²Steward Observatory, University of Arizona. ³National Astronomical Observatory of Japan, Subaru Telescope, National Institutes of Natural Sciences, Hilo, Hawaii.⁴Astrobiology Center, National Institutes of Natural Sciences, Tokyo, Japan.

OUTLINE

- MagAO-X Pyramid Wavefront Sensor Design
 - Optical design of system
 - Lens Results
 - Lab Results
- PYRITE
 - GMagAO-X motivation
 - 3 PWFS vs 4 PWFS
 - PYRITE simulator

MagA

MOTIVATION

c/o Kate Follette

Image of LkCa 15b taken by Kate Follette (Sallum et al., Nature, 2015)

-0.2

0

 ΔX ["]

0.2 0.4

 10^{-3}

 10^{-4}

 10^{-5}

High airmass and 11th mag GS demand high performance.

MAGAO-X

MagAO-X: Magellan **Extreme**

Adaptive Optics System

- P.I. Dr. Jared Males, Steward Observatory
- First light planned: Early 2019
- 2,000 actuator Boston Micromachines Deformable Mirror
- 3.6 kHz correction speed
- Pyramid Wavefront Sensor
- Coronagraph
- Imagers and Spectrographs

Laird Close, Corwynn Sauve

MAGAO-X

Custom locking kinematic optical mounts

MAGAO-X

PYRAMID WAVEFRONT SENSING

Purple: 0.5 arcsec modulation Blue: Real modulation 60mili arcsec Green: No modulation

PYRAMID OPTICAL DESIGN

MagA

Laird Close

LENS DESIGN

Parameter	Requirement	As Built
Wavelength Range	600-1000 nm	600- 1000 nm
Pupil Size	56 pixels; 2.688 mm	2.696 mm
Pupil Separation	60 pixels; 2.880 mm	2.857 mm
Pupil Tolerances	$\Delta < 1/10^{th}$ pixel; 4.8 µm	Δ_{size} =8 μ m, Δ_{sep} =-23 μ m,
Lens Diameter	10mm < D < 20 mm	D=10.1 mm

Manufactured by Rainbow Optics

Radius	Т	hickness	Materia	ıl
13.7680	0	4.40900	S-NPH2	
9.1840	00	4.24900	S-BSM4	
11.2435	0	2.82400	S-LAH64	
11.7547	3	0.00000	Schatz et.	al. in prep

ALIGNMENT

Madison Jean Optical Science Undergrad

INITIAL RESULTS

HeNe Laser Full Pupils

White Light, Stopped Down

THE GIANT MAGELLAN TELESCOPE EXTREME ADAPTIVE OPTICS SYSTEM: GMAGAO-X

- 7x 3,000 actuator deformable mirrors
- 3 OCAM2K detectors
- 240 x 240 mode 2kHz on
 OCAM2k

Look out for Jared's Poster tonight! 10702-341

3PWFSVS 4PWFS

Benefits of Three Sided PWFS:

- Easier to manufacture
- Less pixels = less read noise

Benefits of Reflective vs Refractive:

- Multiple detectors
- Faster, less read noise

Ma

 $\frac{4 \text{ sided}}{S_x} = \frac{I_1 + I_2 - I_3 - I_4}{I_1 + I_2 + I_3 + I_4}$

 $I_1 + I_2 + I_3 + I_4$

PVRITE

Pyramid Residual Wavefront Experiment

Robust Simulation Tool:

 Simulates atmospheric turbulence.

PYRITÉ

- Different Pyramid architectures.
- Reflective vs Refractive
- Manufacturing errors.
- Uses residual wavefront error as a metric.

PVRITE

Run through a console script. Can select:

- Number of photons
- Read noise
- # Pixels across pupil
 - 16, 32, 64

- Kolmogorov Turbulence Model
 - Random phase screens generated
 - Piston, tip/tilt removed.

• Plate Scale:
$$\frac{1}{10} \left(\frac{\lambda}{D} \right)$$

5) RESIDUAL WAVEFRONT

Fit with Fourier Modes to analyze power spectrum

TRADE STUDY

- 3PWFS vs 4PWFS
- Reflective vs Refractive Pyramid
- Manufacturing Errors vs No Errors
- Read Noise
- Guide Star Magnitudes

PYRAMID WAVEFRONT SENSING UPDATE FOR MAGAO-X

LAUREN H SCHATZ^I, Jared Males², Michael Hart¹, Laird Close², Katie Morzinski², Olivier Guyon^{1,2,3,4}, Madison Jean¹, Chris Bohlman², Kyle Van Gorkom¹, Alexander Hedglen¹, Maggie Kautz¹, Justin Knight¹, Joseph D. Long², Jennifer Lumbres¹, Kelsey Miller¹, Alexander Rodack¹

¹College of Optical Sciences, University of Arizona. ²Steward Observatory, University of Arizona. ³National Astronomical Observatory of Japan, Subaru Telescope, National Institutes of Natural Sciences, Hilo, Hawaii.⁴Astrobiology Center, National Institutes of Natural Sciences, Tokyo, Japan.

CANNED SLIDES

Figure 5. The roofing of a four sided pyramid tip.